ラベル カリウム の投稿を表示しています。 すべての投稿を表示
ラベル カリウム の投稿を表示しています。 すべての投稿を表示

2012年5月15日火曜日

カリウム40を引き合いにした安全デマへの反論


カリウム40を引き合いにした安全デマへの反論
~カリウム40による内部被曝とヨウ素131、セシウム134・137による内部被曝を検証する~

 目次
 1.放射能って何?
 2.放射性元素の半減期
 3.天然放射性元素
 4.ベクレルとシーベルト(放射線の単位)
 5.カリウム40
 6.カリウム40とヨウ素131
 7.カリウム40とセシウム134・セシウム137
 8.生物学的半減期と実効半減期
 9.毎日 a ベクレルの放射性物質を摂取し続ける場合の n 日目の蓄積量

 最近、「放射能は怖くない」とか「むしろ少量なら健康にいい」といった議論を見かけることが多くなりました。 
 こうした議論でよく引き合いに出されるのが天然放射性物質の存在です。 確かに放射性物質は有史以前から地球上に存在しており、生物は放射性物質に対してある程度の耐性を持っています。 しかし、これを理由に放射能は安全であるとする議論には怪しいものが多々あります。 ここではそうした議論のうち、カリウム40を引き合いにした安全デマへの反証を試みます。

放射能って何?

 放射能とは放射線を出す能力のことです。 よく放射線や放射性物質と混同して使われますが、正しい用語としては放射線や放射性物質を使うべきです。 放射性物質が放射能を持っているわけですね。

 放射性物質(元素)とは、安定に存在できず 高エネルギーの粒子や電磁波を放出しながら他の元素に姿を変える不安定な元素のことです。 元素の種類が変わるこの現象を「崩壊」、このとき放出される高エネルギー粒子や電磁波を「放射線」、最初の元素が姿を変えた新しい元素を「娘核種」といいます。 新たに生じた「娘核種」が安定な元素なら「崩壊」はそこで停止しますが、娘核種が不安定な放射性元素なら安定な娘核種に変わるまで崩壊が続きます。

放射性元素の半減期

 放射性元素の崩壊のペースは元素の種類によって決まっています。 崩壊は一気に起こるわけではなく、放射性元素の存在量に比例した割合でおきます。 ある一定期間(たとえば2年)で放射性元素の量が半分になるとすると、次の2年でさらに半分に(一番最初の1/4)、 さらに2年の後にまた半分(一番最初の1/8)、というように減少します。

 放射性元素の量が初めの半分になるまでの期間を半減期(物理的半減期)と呼びます。 注意すべきは物理的半減期が経過しても放射性元素の量は半分に減るだけだということです。 物理的半減期の約3.32(=log210)倍を経過すると初めの1/10に、約6.64(=log2100)倍を経過するとようやく初めの1/100に減ります。

天然放射性元素

 地球上のすべての物質(元素)は太陽のような恒星の核融合反応で作られたと考えられています。 恒星が生涯を終えると、そこで生まれた多様な元素が新たな恒星や惑星を作ります。 現在地球上に残っている天然放射性元素のうち量が多いものは地球誕生時からの生き残りなのです。 地球が生まれてから四十数億年が経過していますから、量が多い天然放射性元素は半減期の長いものばかりです。

 そのうち、特に人間への影響が大きいものにウラン238やトリウム232、カリウム40があります。
これらの放射性物質は花崗岩などの岩石に含まれ、自然放射線の源になります。 ウラン238やトリウム232の娘核種にはラジウムやラドンがあり、 このうちラドンはラドン温泉として健康増進効果があると喧伝される一方、被曝による発癌リスクの上昇が指摘されています。
 ウラン、トリウム、ラジウム、ラドンは生物が必要とする元素ではありませんが、カリウムは生物にとって必須の元素です。 そのために生物の体内に大量に存在し、内部被曝の原因となります。

ベクレルとシーベルト(放射線の単位)

 内部被曝の話を始める前に放射線の単位について確認しておきましょう。

 ベクレル(Bq)は放射性元素の量を表す単位で、1ベクレルは1秒間に1個の原子が放射性崩壊を起こす時の分量です。
1個の放射性崩壊が開放するエネルギーは元素の種類や崩壊のタイプによって違います。 この崩壊エネルギーの大きさが放射線の人体に対するダメージの大体の目安になります。 崩壊1個当たりのダメージが元素によって違うわけですから、同じベクレル数でも元素によって人体へのダメージは異なります。
 そこで、人体に対する破壊力の目安としてシーベルト(Sv)という単位が用いられます。 (シーベルトは放射性崩壊がもたらすエネルギーを生体組織の質量当たりで換算したもので、単位は[J/kg]に等しくなります。)
 1シーベルトは単位として大きすぎるため、その1/1000のミリシーベルト(mSv)や1/1000000のマイクロシーベルト(μSv)もよく使われます。 難しい話を全部理解する必要はありませんが、 ベクレルは1秒あたりの崩壊数、シーベルトはそれを人体への影響に換算したエネルギー量ととらえておいてください。

カリウム40

 カリウムは地球上に普通に存在する元素です。 その大半は放射性のないカリウム39とカリウム41で占められていますが、カリウム全体の0.01%ほどがカリウム40という放射性元素です。

(カリウム39とか40とかいう番号は原子核の中に含まれる核子の個数を表しています。 核子の個数が違っても元素としての化学的性質は全く同じですが、比重がわずかに違うほか放射性の有無だけが変わります。 こうした核子の個数違いの元素のことを同位元素(同位体)、同位元素のうち放射性をもつものを放射性同位元素(同位体)と言います。)
 カリウム1gにはカリウム40が約30ベクレル含まれ、白米1kgでは33ベクレル、海水1リットルで12ベクレルのカリウム40が含まれます。 カリウムは人体中で一定量に保たれており、体重60kgの成人男子で約4000ベクレルのカリウム40を含有しています。 カリウムは全身に広がりますので、カリウム40による内部被ばくは身体の部位によらず年間0.17ミリシーベルトと見積もることができます。
 自然の状態で人間は内部被ばくをしながら生きている。だから人間は放射線に対する耐性を生まれつき備えている。ここまでは確かに事実です。
(カリウム40に関する諸数値はWikipediaによりました)

カリウム40とヨウ素131

 だからと言って、人体が人工の放射性物質に対しても十分な耐性を持っている、という議論にはなりません。

 放射性ヨウ素131に関してはすでに別のサイトで反論があります (makirintaroさんのブログ http://ameblo.jp/makirin1230/entry-10927802058.html) ので、ここでは要点だけをまとめさせて頂きます。計算上のポイントは次の3点です。
  • カリウム40は体中に均一に広がるのに対し、経口摂取されたヨウ素131は20%が甲状腺に集まる
  • 甲状腺の質量は全体重の約1/3000
  • カリウム40の崩壊エネルギーは平均0.52MeV、一方ヨウ素131の崩壊エネルギーは平均0.19MeV(カリウム40の約0.365倍)
結果として、経口摂取された同じベクレル数のヨウ素131が甲状腺に与えるダメージの大きさはカリウム40に比べて
3000×(20/100)×0.365 = 219.2
と約220倍になってしまいます。 事実、ヨウ素131は甲状腺ガンやバセドウ病の"治療薬"として甲状腺の組織を"殺す"ために使われます。 ただし、ヨウ素131は半減期が約8日と短いのでカリウム40のように被曝が恒常的に続くことはありません。 このこともヨウ素131が"治療薬"として利用される理由になっています。
 3月に福島原発から漏れたヨウ素131はほとんど残っていませんので、これ以上何事もなければ今後ヨウ素131による被曝はないと考えていいでしょう。 現段階ではヨウ素131による健康被害の報告はないようですが、 甲状腺被曝が目に見える病状に変わるまで何年も潜伏期間がありますから本当に問題なかったかどうかまだわかりません。
(本節で取り上げた諸数値の出典はmakirintaroさんのブログ http://ameblo.jp/makirin1230/entry-10927802058.html にあります)

カリウム40とセシウム134・セシウム137

 セシウムはヨウ素と並んで原子力災害に際して影響の大きい放射性物質の一つです。 セシウムは本来生物にとって必要のない元素ですが、科学的性質がカリウムと似ているため生体に吸収されやすい性質をもちます。 逆もまた真なりで排出もされやすいのですが、飲食物中に一定量の放射性セシウムが含まれるような状態が続くと カリウム40のように常に一定量が体内に存在して内部被曝を起こします。

 放射性セシウムによる内部被曝の影響を評価する場合の計算上のポイントは次の3点にまとめられます(計算方法の詳細はこのページ最後の2節をご覧ください)。
  • セシウム134の実効半減期 Teff は約88日~約158日、セシウム137の実効半減期 Teff は約70日
  • 毎日 a ベクレルのセシウムを摂取し続ける場合の n 日目の蓄積量は
    a × (1 - rn) / (1 - r)   ただし r = (1/2)^(1/Teff)
  • セシウム134の崩壊エネルギーは平均0.16MeV、セシウム137の崩壊エネルギーは平均0.19MeV(カリウム40は0.52MeV)
 2点目の式が計算の要になります。 詳しくはjavascriptの計算ツールを追加作成しましたのでご利用ください(計算ツールについている最後のボタンがそれです)。 ここではひとまずおよその傾向をまとめておきましょう。
  • セシウムを一定量摂取し続ける場合、蓄積量は日数とともに増えるが増え方は徐々に穏やかになり、やがて上限に達する。
  • 蓄積量の上限は実効半減期 Teff の値によって異なり、Teff = 70 日で約 101.5a ベクレル、 Teff = 88 日で約 127.5a ベクレル、Teff = 158 日で約 228.4a ベクレルとなる。
  • セシウムの摂取が実効半減期 Teff と同じだけ続くと上限値の丁度半分のセシウムが蓄積する。
 つまり、大雑把にいってセシウムの摂取を続けると一日摂取量の100~200倍が蓄積するということです。 ちなみにこの結論はICRPのPublication111(http://www.jrias.or.jp/index.cfm/6,15092,c,html/15092/20110420-192047.pdf)の図2.2とも符合します。
ICRPのPublication111の図2.2
 このグラフでは1日に1ベクレルのセシウム137を摂取し続けた場合と10ベクレルのセシウム137を摂取し続けた場合の蓄積量が計算されています。 いずれの場合も摂取を続けることによって一日摂取量の150倍程度の蓄積が起きると読み取れます。
 さて、原子力安全委員会の暫定基準値では水道水で放射性セシウム200Bq/kg(ベクレル毎キログラム)、食品で500Bq/kg(ベクレル毎キログラム)が許容されています。 この基準値で水を毎日1.5リットル、食品をかれこれ1kg摂取し続けるとしましょう(ほぼ成人の平均)。 毎日のセシウム摂取量は800ベクレルですから、長期摂取による蓄積量は80000から160000ベクレルです。
 これはカリウム40の蓄積量4000ベクレルに対して20~40倍になります。 セシウムの崩壊エネルギーはカリウムの1/3程度ですから、体に対するダメージは少し減ってこの1/3倍つまり約7倍から14倍程度です (なお、セシウムによるダメージがカリウムのそれと比べて小さいから安全という訳ではないことにご注意ください。 セシウムによるダメージはカリウムのダメージに上乗せで効きます。セシウムによるダメージがカリウムと同等ならトータルで2倍のダメージです。)。
 これは影響ないレベルでしょうか?健康な人間がカリウム40による内部被曝に対して抵抗力をもっていることは確かです。 しかし、どれほどの余裕をもってカリウム40のダメージに対抗しているか定かではありません。個人差もあるでしょう。 ある人は放射線によるダメージが自然状態の8倍でも大丈夫かもしれません。でも、人によっては2倍になっただけでも危ないかもしれません。 仮に内部被曝の増加によって直接的なダメージを受けない場合でも身体の負担は増えます。 よく言われる放射線による免疫力の低下がこれに該当するでしょう。放射線の影響は発癌率の上昇や白血病というかたち以外でも現れるのです。
 素人考えですが、少なくとも「暫定基準値」が健康に影響ないレベルと考えてよい合理的な理由は見当たりません。


生物学的半減期と実効半減期

 生物は新陳代謝をしていますから、生物の体内に入った放射性元素は元素崩壊を待たずに排出される部分があります。 大雑把に言うとこの排出のペースもまた放射性元素の存在量に比例した割合でおきます。 したがって、ある一定期間(たとえば70日)で放射性元素の量が半分になるとすると、次の70日でさらに半分に(一番最初の1/4)減少します。 生物の新陳代謝によって放射性元素の量が初めの半分になるまでの期間を生物学的半減期と呼びます。 生物学的半減期は年齢・性別や生活環境によって変わるので物理的半減期と違って値に幅が出ます。

 実際に生物の体内から放射性元素が消えるペースは物理的半減期と生物学的半減期の相乗効果になります。 物理的半減期を Tp(日)、生物学的半減期を Tb(日)とすると生体中の放射性元素は 物理的作用(元素崩壊)によって一日で (1/2)^(1/Tp) 倍に、 生物学的作用(新陳代謝)によって一日で (1/2)^(1/Tb) 倍に減少します。 双方の作用を合わせると (1/2)^(1/Tp) × (1/2)^(1/Tb) 倍に減少するわけです。
 物理的作用と生物学的作用をどちらも考慮して生物の体内から放射性物質が消えるペースの目安として実効半減期を使うことがあります。 実効半減期を Teff(日)とすると一日で放射性物質は (1/2)^(1/Teff) 倍に減少するわけなので、 これを先ほどの (1/2)^(1/Tp) × (1/2)^(1/Tb) 倍と等しいとして
(1/2)^(1/Teff) = (1/2)^(1/Tp) × (1/2)^(1/Tb)
これを解いて Teff = Tp × Tb / (Tp + Tb) となります。
  • セシウム134の物理的半減期を約2年、生物学的半減期を100~200日とすると実効半減期は88~158日
  • セシウム137の物理的半減期を約30年、生物学的半減期を約70日とすると実効半減期は約70日
となります。前節で用いた実効半減期はこの値です。
(セシウムの生物学的半減期の参考にしたサイトが行方不明になってしまいましたが、その名残が社団法人広島県医師会のサイトhttp://www.hiroshima.med.or.jp/pamphlet/245/1-1.html にありました) 


毎日 a ベクレルの放射性物質を摂取し続ける場合の n 日目の蓄積量

 最後に前前節で取り上げたセシウム蓄積量の計算方法を紹介しておきます。 計算方法は数列の和を用いる方法と指数関数を積分する方法がありますが、 現実の放射性物質の摂取の仕方と比べてどちらが近いとも言えないので 高校の理系進学クラスでしかやらない指数関数の積分ではなく数列の和で計算します。 どちらの計算方法でもわずかな違いしか出てきませんので、毎日同じだけの放射性物質を摂取するという大雑把な仮定に比べればささいな差です。

 ある日 a ベクレルの放射性物質を摂取したとするとその放射性物質は翌日には (1/2)^(1/Teff) 倍に減少します。 ちょっと面倒なので (1/2)^(1/Teff) = r と書くと一日前に摂取した a ベクレルの放射性物質は翌日には ar ベクレルになります。 この放射性物質はさらに翌々日には ar2 ベクレルになり3日後には ar3 ベクレルになります。 つまり n 日分の蓄積量は当日摂取した a ベクレルから n-1 日前に摂取した arn-1 ベクレルまでの和
a + ar + … + arn-1 = a × (1 - rn) / (1 - r)   ただし r = (1/2)^(1/Teff)
となります。
最終更新日時: 01/28/2012 14:53:33

セシウム放射線内部被曝とカリウム

セシウム放射線内部被曝とカリウム (少し詳しい解説、その1)

はじめに 福島原発爆発によって莫大な放射能が環境に撒き散らされました。 原発事故後、健康にとって、特に重要な放射能は、放射性ヨウ素、ストロンチウム、セシウムです。放射性ヨウ素の半減期は8日なので、4月初めに存在した放射性ヨウ素は、9ヶ月たった2022年1月では、1/2の33乗、100億分の1と、ほとんどなくなっています。

ストロンチウムとセシウムの半減期は約30年と長いので、福島原発から放出されたストロンチウムとセシウムの地球にある放射能量はほとんど減っていません。現在、食物や環境で測定されている放射能はほとんどがセシウムで、食物や環境のセシウム放射能が減っているのは、地上から減っているのではなくて、別の場所に移動したからです。ストロンチウムはガンマ線を出さないので測るのが面倒なこともあり、あまり測定、公表していませんが、ストロンチウム汚染がないことや、心配しないでよいことを意味しません。原発で作られた放射性ストロンチウムの量はセシウムと同程度存在すると考えられますが、大気などへの拡散の仕方が違うので、セシウムが検出されたところには同程度のストロンチウムがあるということでもありません。

放射性ヨウ素、ストロンチウム、セシウムの生体に対する傷害作用が違うのは、放射能・放射線の種類が違うからというよりは、主に放射性物質が生体のどこにどれくらいの期間存在するかということによるものです。

ヨウ素は甲状腺に集まるので、甲状腺傷害や、甲状腺癌の発生頻度を上げます。ストロンチウムは摂取すると、骨に集まって骨の成分として骨に固まってしまうので、排泄は難しく、同じ場所で放射線を出し続けるので、近くにある骨髄細胞が持続的に被曝し続け、白血病など、骨髄で作られる白血球などの血液細胞に傷害が出やすくなります。セシウムは体中の水に溶けて広く分布します。同じベクレル数の放射能を摂取しても、ヨウ素やストロンチウムのように特定の場所に集中的に被曝させるのではなく、全身の細胞が低いレベルで被曝します。

放射線の作用は、様々な物質(分子)の構造を少しこわすことで、紫外線の働きと似ています。紫外線を強くあてると、塗装の色が変わったり、紙やプラスチックががさがさになったりします。生体内でも蛋白や様々な生体構成物質、遺伝子の本体であるDNAが変異を生じて、体内で様々なことが起きます。DNAが変異を起こした場合は、その細胞から新しい細胞が作られるとき、新しい細胞にDNAは変異したまま複製されて引きつがれます。

本論ではストロンチウムの話は省略して、
セシウムの放射能とカリウムについて述べます。
原子炉や核爆発で30種類以上の放射性セシウムが作られますが、
その多くは半減期が数日から1秒以下と短く、
被曝を避けるうえで重要なのはセシウム134とセシウム137の2つです。
前者の半減期は約2年、
後者は約30年で、放射線を出すこと以外の元素としての性質は、
非放射性のセシウムと同じです。

セシウムの体内分布 


ヨウ素は甲状腺細胞のヨウ素を取り込むポンプの働きによって
甲状腺に取り込まれます。


ストロンチウムはカルシウムと似ていて、
骨の成分として骨の中に固まります。


セシウムは、水に溶けて体中に分布しますが、
カリウムと似た分布、挙動をすると考えられています。

セシウムはカリウムと似ていてもまったく同じではないので
カリウムの動態からセシウムを機械的に同じと考えるのは正しくありません。


カリウムについては非常に詳しくわかっており、一方セシウムについては、
厳密な測定は十分されていないので、
測定されてわかっていることとカリウムの動態からの推測をして考えます。

「セシウムは筋肉に多く含まれる」と解説されることがあります。
大まかには正しいのですが、かなりあいまいな言いかたです。
例えば、屍体から摘出した臓器のセシウム放射能を測定して
他の臓器や組織よりも、
筋肉組織(骨格筋)のセシウム放射能が高いという研究結果があります。
発表された測定値はおそらく事実と思います
(中には嘘を発表する人がいることはご存知の通り)。

おおまかには正しく、重要な知見ですが、
これだけで単純に、


「骨格筋細胞内のセシウム濃度は他の細胞よりも高い」
と結論できません。


評価、結論するには以下の考慮すべきことがあります。


骨格筋組織重量の大部分は細胞(骨格筋細胞)である


一方、腱組織などは、細胞が作った、


コラーゲンなどの細胞外成分が大部分を占め、


細胞が占める割合は少ない。多くの組織はこの間にある。


だから、重量あたりの腱組織のセシウム濃度が筋肉より低くても、


腱を構成している細胞内のセシウム濃度が低いとはいえない。


また、消化腺など、分泌機能を持つ細胞では、


細胞内に分泌顆粒という袋があり、


その中には、細胞内液とは組成が異なる成分がある。


だから


臓器や組織の重さとセシウム放射線を測って計算した


重量あたりの放射線量の結果は、


正確には細胞内のセシウム量や濃度を意味しない。



カリウムの生体内分布


一部は蛋白などと結合して水に溶けない状態で存在するが、


カリウムの大部分はイオンとして水に溶けて体中に分布し、


細胞内液には細胞外液よりはるかに高い濃度で分布する(約20倍)

この細胞内外の不均等分布は、主に、




①ナトリウムを細胞外に、カリウムを


細胞内にエネルギーを使って輸送する細胞膜にあるポンプ蛋白の働きと、


②細胞膜がナトリウムを通しにくいために


細胞外のナトリウムイオンが高いまま保たれる結果、


細胞外の陽イオンが高く、細胞内陽イオンが細胞外液と均等になるように、


細胞膜を通過しやすいカリウム(陽イオン)が


細胞内に多く移動して分布することなどによる。




・ 細胞膜は脂でできているので、


ナトリウムやカリウム、カルシウム、ブドウ糖など、


水溶性の物質は細胞膜を透過しない。


細胞膜に浮かんで存在しているそれぞれの機能を持つ蛋白と結合したり、


それぞれのイオンを通す穴の役割をするイオンチャンネル蛋白を介して、


細胞膜を通過する。


ナトリウムチャンネル、


カルシウムチャンネル、


カリウムチャンネルなどはそれぞれ複数の種類があり、


細胞の種類による分布や働きが異なる。



・ セシウム放射能が筋肉組織に多く含まれることのメカニズムは、


セシウムが細胞内の水に多く溶けて分布していることと、


骨格筋組織は細胞成分の割合が多いことによる。


これに加えて、筋細胞は他の細胞よりもセシウム濃度が高い可能性があるが、


発表された文献をよく吟味しないと、


骨格筋細胞が、他の細胞よりも高濃度にセシウムを含有しているかについて、


今、私は断言できない。



・ 細胞内外のセシウムの不均等分布のメカニズムの中心は、


セシウムを運ぶポンプの働きよりは、


おそらく、セシウムが細胞膜のカリウムチャンネルを通過することだろう


と私は推測しているが推測である。


推測の理由は省略する。


どの程度までわかっているのか文献を調べればわかるが、


今のところ文献を調べるだけの余裕がないから調べていない。



・ セシウムがナトリウムチャンネルは通過せず、


カリウムチャンネルを通過することが、


セシウムが細胞内に多く分布するメカニズムと考えた場合、


複数あるカリウムチャンネルのどれもセシウムの通過させやすさは一様か、


異なる種類のチャンネルにおいてカリウムの通過しやすさと


セシウムの通過しやすさは同程度かなどの問題がある。



・ 酸素や血流がなくなると、


細胞膜にあるナトリウムポンプはエネルギー供給が途絶えて働かなくなり、


その結果細胞内から細胞外へのナトリウムくみ出しが減って、


細胞内のナトリウム濃度が高まる。


細胞内ナトリウムが増えた結果、


細胞内外でのナトリウムイオンの濃度差減少によって


細胞内外の陽イオン濃度の不均衡が減少し、


その結果、カリウムは細胞内から細胞外へ拡散移動して


細胞内濃度は低下する。


おそらくセシウムもカリウムに似た挙動をするだろうがその速さ、


程度はカリウムとは異なるだろう。





臓器や細胞によって異なるが、


心臓が止まって人が死亡しても、


細胞は数時間から数十時間は生きている。


その間、細胞の様々な機能は低下し、やがて死ぬ。


死後摘出した臓器はこのような条件で得られたものなので、


セシウムがカリウムと似た動きをするのであれば、


死後、細胞内のセシウムは細胞外に移動するはずだから、


そのとき測定した細胞内のセシウム濃度は


正常に細胞が生きている状態から変化している。


細胞外に移動しても、血流が途絶えているので、


細胞付近にかなり留まっていると考えれば、


臓器の組織重量あたりのセシウム意量はあまり変化しない


と考えてもよいかも知れないが断定はできない。





体内カリウムの放射線 




カリウムは動植物の体内に多く存在し、


細胞機能にとっ基本的で重要な物質です。


大部分は水に溶けて存在し、


動物では 細胞内液には


細胞外液のセシウム濃度の20倍以上の濃度で保たれています。


人間の体重の約60%は水で、


細胞内に40%、


細胞外に20%存在します。


細胞内外の水の量と、


細胞内外のカリウム濃度はそれぞれほぼ一定に保たれているので、


体全体のカリウム量も一定に保たれていることになります。




地球上のカリウムには1万分の1の放射性カリウムが均等に混じっています。


生体内には一定量のカリウムが存在しますから、


人は必ずカリウムによる放射線の内部被曝を受け続けています。


生体内の放射能のほとんどはカリウム由来で、


60kgの成人では総量3000~4000ベクレルで、


無視できるほどは少なくはありません。





生体内でカリウム濃度


通常は15% 程度の変動範囲内に調節されています


食物に含まれるカリウム摂取が余分なときは尿として排泄され、


摂取量が少ないときは、


尿中カリウム排泄を減らして、体内のカリウム濃度を保ちます。


腎不全でカリウムを十分排泄できず体内にカリウムが増えすぎたり、


食事をとれないなどによって長期にカリウム摂取が減ると、


心臓が止まるなど重大な障害を生じます。

「カリウムには放射能があるから、


どんな食物にどれくらいのカリウムがあるかを知り、摂取量を下げよう」


と考える人がいますが正しくありません。


カリウムは生体にとって絶対に必要な物質で、


体内の量は一定に保たれていますから、


普通に生活している範囲では食物摂取によるカリウムは沢山摂っても、


減らしても、体内のカリウムとカリウムによる放射線被曝は変わりません。


放射能セシウム汚染食物などを介して、


体内に少量の放射線セシウムがあった場合、


カリウムはセシウム放射線より高レベルであっても、


カリウムを飲食すると、余分のカリウムは尿に排泄され、


この時セシウムも一緒に排泄される傾向があり、


カリウムは一定に保たれ体内セシウムを尿に排泄する効果があります。

カリウムは放射能があるからと考えて、


カリウム摂取を減らしてしまうと、尿中排泄カリウムが減り、


体内のカリウム量は下げずに、セシウムの排泄を遅らせて、


生物学的半減期を延長させ、


その結果、セシウムをより長期に体内にとどめることになります。

「①ヒトはカリウムの放射線には適応して進化してきたから、


②カリウムは自然放射能だから、生体に有害ではない」


と言う人がいますが正しくありません。


ガンマ線やベータ線で内部被曝すれば、


カリウムによる自然放射能も、セシウムの人工放射能も、作用は同じです。

放射能を持たないカリウムだけの食事をして、


カリウムによる内部被曝をなくすことができれば、


おそらく、癌や、老化をはじめ多くの健康を害するものが軽減するはずです。


しかし放射能を持たないカリウムを入手できないので、


1万分の1の放射性カリウムを含むカリウムを食べて生きています。









読書会に爆破予告? 多様性をめぐり分断深まるアメリカの今 2023年6月27日 LGBTQ アメリカ

  読書会に爆破予告? 多様性をめぐり分断深まるアメリカの今 アメリカ各地で広がっている、ある読書会。 子どもたちに多様性への理解を深めてもらいたい。そんな思いから始まりました。 しかし今、こうした読書会が爆破予告や反対デモで、中止に追い込まれる事態が相次いでいるといいます。 い...